Enhancement of PEM fuel cell performance by flow channel indentation
نویسنده
چکیده
A three-dimensional, steady, single-phase flow of oxygen, nitrogen and water vapor mixture in the cathode of proton exchange membrane (PEM) fuel cell was numerically studied here. It was shown that the performance of the cell was enhanced by partial blockage of the flow channels in a parallel flow field. Since, channel indentation could increase oxygen content within the catalyst layer. It was observed that the influence of channel indentation in high current density regions was noticeable. Various types of blocks with profile shapes: square (SQ), semicircle (SC) and trapezoid (TR) were considered. Enhancements were compared with the no-dent (ND) called as the base case. The voltage to current relation was modeled using the Tafel equation. This provided the distribution of current density at a prescribed cell voltage. The computations were performed at 333 K, 100,000 Pa, water dew point temperature 313 K, and 50% utilization within the range of 0.2–0.8 V. It was predicted that the flow turns to be two-phase in high current density regions (say cell voltages less than 0.4 V). To push the condensate out of the flow field, adequate pressure gradient were required. This prerequisite was already taken into account in this study. A parametric study considering the influences of dent heights and arrangements, exchange current density, fluid viscous resistance and rib sizes were considered providing enhancements over 25% in the net power. The present study gives a very helpful guideline for flow field manufactures. 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Performance Improvement of PEM Fuel Cells Using Air Channel Indentation; Part I: Mechanisms to Enrich Oxygen Concentration in Catalyst Layer
A three dimensional, compressible, steady, one phase flow of reactant-product mixture in the air side electrode of proton exchange membrane fuel cell (PEMFC) is numerically studied in this paper. The mixture is composed of three species: oxygen, nitrogen and water vapor. The performance of the cell is enhanced by partial blockage of the flow field channels. Various types of these blocks also ca...
متن کاملThe effect of vertical injection of reactants to the membrane electrode assembly on the performance of a PEM fuel cell
In order to present a new and high performance structure of PEM fuel cell and study the influence of the flow direction and distribution on the rate of reactants diffusion, three novel models of vertical reactant flow injection into the anode and cathode reaction area field have been introduced. They consist of one inlet and two inlets and also a continuous channel. The governing equations on t...
متن کاملThe effect of increasing the multiplicity of flow fields contact surface on the performance of PEM fuel cell
In this paper, three innovative 3-D geometries for flow fields of cathode and anode have been developed to investigate the comparative impact of increasing the multiplicity of the involved anode-cathode channel surface contact on the efficiency of electrochemical reaction via the same membrane electrode assembly (MEA) active area. In the introduced new models, each anode channel includes two, t...
متن کاملModeling and simulation of a new architecure stack applied on the PEM Fuel Cell
To simulate a new economical architecture for PEM fuel cell and investigate the effectiveness of the introduced structure on the performance, computational fluid dynamics (CFD) code is used to solve the equations for a single domain of the cell namely: the flow field, the mass conservation, the energy conservation, the species transport, and the electric/ionic fields under the assumptions of st...
متن کاملNumerical Modeling of an Innovative Bipolar Plate Design Based on the Leaf Venation Patterns for PEM Fuel Cells
Flow channel design on bipolar plates has a direct effect on Proton Exchange Membrane (PEM) fuel cell performance. It has been found out that the flow field design has a deterministic role on the mass transport and water management, and therefore on the achieved power in PEM Fuel cells. This study concentrates on improvements in the fuel cell performance through optimization of channel dimensio...
متن کاملThe effect of inclined radial flow in proton exchange membrane fuel cells performance
Computational fluid dynamics analysis was employed to investigate the radial flow field patterns of proton exchange membrane fuel cells (PEMFC) with different channel geometries at high operating current densities. 3D, non-isothermal was used with single straight channel geometry. Our study showed that new generation of fuel cells with circle stack with the same active area and inlet area gave ...
متن کامل